Who am I?

- Joined the team in 2012 (fall of 2011)
- Floated around, did some bits of design work, some fabrication and some assembly.
- As I got more familiar with the process, I often made suggestions and tried to encourage changes:
 - Start of the parts log
 - Changes in how we organized CAD files
 - Organization ideas for fabrication

- Asked to run robot build in 2014 after le graduated).
- Attended MIT and Syracuse University for architecture.
 - Worked in Boston, Syracuse and Rochester. Projects in MA, NH, VT, CT, NJ, NY, DC, VA, FL, MN, NE, CA.
- Own my own firm (Rhen Design) since 2006.

~		V	L		0	11			ĸ	L	IVI	11	0	,
	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	2008	2007	2006	200
							-							
Champs	NA	51*	25*	28	30	55	67	36	10	12	35	8	2	?
munpo			25	20						3. 4.4 7.5				
LR	4	47	2	9	10	40	9	11	5	12	29	30	?	
Aidwest	17	2**												
			2***											
Greater Toronto			2***											?**
Nontreal				7										
ech Valley					7									
Boston						37**			2***			5	?	
							12220							
Connecticut							14							
DC								16						
Chesapeake										12				
hiladelphia											3			
														525
luckeye														?
	P	egional allia	nco canta	in 6/10 tim	06	P	agional allia	nce canta	in 3/10 tim	05				
	i i i		ge ranking		ies			ge ranking		5				
	1 regiona	l win, 1 reg			ision wins	1 regiona			s, 1 subdivis	sion finals				
			, <mark>2 Einstein</mark>			Ū.	, .		6					
	Selected for Einst				Alliance 1		Alliance 3		Alliance 5		Alliance 7			
	= Regional Winne				Alliance 2		Alliance 4		Alliance 6		Alliance 8			
	* = Regional Finali	St												

-

- 2018: FLR & Midwest Quarterfinalists
- 2017: FLR Semi-finalists, Midwest Regional Winners, Curie Subdivision Winner
- 2016: Greater Toronto Central Regional Finalists, FLR Quarter Finalists, Curie Subdivision Winner
- 2013 Boston Regional Winner
- 2005 Greater Toronto Regional Winner, Einstein Rookie of the year
- Regional Chairman's Award: 2017, 2016, 2015, 2014, 2011, 2010, 2009, 2007
- Regional Engineering Inspiration Award: 2017, 2014, 2012, 2010, 2008, 2006

The Starting Point: GOALS!

- EINSTEIN Our robot design group puts this on the board the first day of Build Season. This is our goal.
- We are willing to accept failure.
 - Fail Early and Fail Often

If you never try you will never succeed.

2018 Build Season Meeting Schedule

Work Times A Days: 5:00 PM -10:00 PM B Days: 10:00 AM - Midnight C Days: 10:00 AM - 10:00 PM Meal Times in G7 Lunch: 1PM Dinner: 6PM

Note: Integration meetings should be attended by robot subteam lead mentors and students. Rooms Reserved: G3, G4, G7, H21, and Cafeteria unless otherwise noted

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1	2 Team Meeting Kickoff Travel Meeting	3	4	5	6 KICKOFF! 8 AM-4PM: All Team 4PM-12AM: Strategy
7 ~C Day~ 10AM-2PM: All Team 2PM-9PM: Proto	8 ~DAY OFF!!~	9 ~A Day~ Dinner in Cafeteria	10 ~A Day~	11 ~A Day~ 9:15PM: Integration	12 ~DAY OFF!!~	13 ~B Day~ 9:15PM: Integration 11AM-1PM: Strategy
14 ~C Day~	15 ~DAY OFF!!~	16 ~A Day~ 9:15PM: Integration	17 ~A Day~	18 ~A Day~ 9:15PM: Integration 6:30PM: Leadership	19 ~DAY OFF!!~	20 ~B Day~ 9:15PM: Integration 1:30PM-3:30PM: Strategy
21 ~C Day~	22 ~DAY OFF!!~	23 ~A Day~ 9:15PM: Integration	24 ~A Day~	25 ~A Day~ 9:15PM: Integration 6:30PM: Leadership	26 ~DAY OFF!!~	27 ~B Day~ 9:15PM: Integration 11AM-1PM: Strategy
28 ~C Day~	29 ~DAY OFF!!~	30 ~A Day~ 9:15PM: Integration	31 ~A Day~			

Rev. 10/11/2017 11:08 PM

2018 Build Season Meeting Schedule

<u>Work Times</u> A Days: 5:00 PM -10:00 PM B Days: 10:00 AM – Midnight C Days: 10:00 AM – 10:00 PM D Days: 5:00 PM – 11:00 PM Meal Times in G7 Lunch: 1PM Dinner: 6PM

Note: Integration meetings should be attended by robot subteam lead mentors and students. Rooms Reserved: G3, G4, G7, H21, and Cafeteria unless otherwise noted

February 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1 ~A Day~ 9:15PM: Integration 6:30PM: Leadership	2 ~DAY OFF!!~	3 ~B Day~ 9:15PM: Integration 11AM-1PM: Strategy
+ 10AM to 5:00PM	5 ~DAY OFF!!~	6 ~A Day~ 9:15PM: Integration	7 ~A Day~	8 ~A Day~ 9:15PM: Integration 6:30PM: Leadership	9 ~A Day~	10 ~B Day~ 9:15PM: Integration 11AM-1PM: Strategy
11 ~C Day~	12 ~D Day~	13 ~D Day~ 9:15PM: Integration	14 ~D Day~	15 ~D Day~ 9:15PM: Integration 6:30PM: Leadership	16 3PM to Midnight: Café	17 10AM to Mid 10AM – Mid: Cafe
18 8AM to Midnight RALLY	19 ~A Day~ BREAK WEEK SETUP FIELD IN CAFETERIA 2PM-Midnight	20 ~A Day~ BREAK WEEK USE FIELD IN CAFETERIA 2PM-12:30AM STOP BUILD DAY!	21 6PM to 10PM BREAK WEEK USE FIELD IN CAFETERIA	22 6PM to 10PM BREAK WEEK USE FIELD IN CAFETERIA	23 6PM to 10PM BREAK WEEK USE FIELD IN CAFETERIA	24 10AM to 10PM USE FIELD IN CAFETERIA
25 10AM to 10PM TEARDOWN FIELD IN CAFETERIA	26 ~DAY OFF!!~	27 6PM - 10PM	28 ~DAY OFF!!~			

Rev. 10/11/2017 11:08 PM

Team 1511 Build Season Robot Project Schedule January 2018

Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1 DAY OFF!!	2 Kickoff Travel Meeting	3 DAY OFF!!	4 DAY OFF!!	5 DAY OFF!!	6 KICKOFF!
7 Start Initial Prototypes Decide Drivetrain Design and Order Parts	8 DAY OFF!!	9 Decide Strategy Start Drivetrain Build	10	11 Initial Prototyping Complete Decide Robot Design	12 DAY OFF!!	FIELD COMPLETE
14	15 DAY OFF!!	16	17	18 Drivetrain Complete	19 DAY OFF!!	20 Controls Design Due
21 Chairman's Draft Due Robot Controls Design Complete	22 DAY OFF!!	23	24 Mechanism Design Complete	25 All robot parts ordered and drawings submitted to Harris and Chamtek	26 DAY OFF!!	27
28	29 DAY OFF!!	30	31			

Team 1511 Build Season Robot Project Schedule February 2018

Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2 DAY OFF!!	3 Receive all robot parts Start Robot Assembly
4	5 DAY OFF!!	6 Submit CHAIRMAN'S & Woodie Flowers	7	8 Chairman's Award & Woodie Flowers Due Robot Controls Complete Electrical Complete	9 DAY OFF!!	10 Assembly of Robots Complete
11	12	13 Submit Dean's List & Entrepreneurship Award Scouting Database Complete	14 Programming Complete	15 Dean's List & Entrepreneurship Award Due Driver Practice	16 RALLY FIELD SETUP IN CAFE Driver Practice	17 RALLY FIELD SETUP IN GYM Driver Practice
18 ROCHESTER RALLY!	19 Driver Practice	20 STOP BUILD DATE! BOTH ROBOTS COMPLETE!	21 Driver Practice Robot Code Refinement	22 Driver Practice Robot Code Refinement	23 Driver Practice Robot Code Refinement	24 Driver Practice Robot Code Refinement
25 Driver Practice Robot Code Refinement	26 DAY OFF!!	27 Driver Practice Robot Code Refinement	28 DAY OFF!!			

Kick-off has it's own detailed schedule that brings the team together at times, and separates into groups (Strategy and Robot).

- Strategy focuses on Game play, game rules and maximizing point potential to arrive at a list of robot functionality priorities.
- Robot focuses on the gathering Information phase of design – which we'll get into more later.
- We come together at certain points to share information, keep the entire team engaged in the process and start building consensus.

2017 Kickoff Weekend: Saturday Schedule Overview

Time	Room	Lead	Group	Description	Deliverable
10:30 AM	SHS	EB	Team	Kickoff stream and game reveal	KOP picked up
12:00 PM	Cafe	LL	Team	Lunch	
12:00 PM	Cafe	JG	Strategy	Small group reads The Tournament section of the game manual during lunch	List of ranking information and other important rules
12:30 PM	G3	TC/JD		KOP Inventory	
12:30 PM	C23	AA/JK	Field	Begin Rally field planning/prep	Home Depot shopping list
12:30 PM	Cafe	LL.	Team	Begin reading the game section of the Manual and highlight rules / write post-it notes for the criteria below	Post-it notes of rules
2:00 PM	Cafe	LL	Team	Share post-it notes and discuss the following: Ways to Score Points Ways to Prevent Points Way to Lose/Descore Points Penalties Interesting Rules Questions for FRC Q&A Potential robot and game strategies	Comprehensive, bulleted lists of the post-it topics
2:00 PM	Cafe	JG	Team	Share list of important Tournament Rules such as ranking, tie-breakers, format, etc	
3:00 PM	Cafe	LL	Team	Break Time and Split into Groups	
3:15 PM	G3	RK	Design	Read The Robot section in the manual. Use the post-it method to list robot design parameters: • Size Limitations • Game Start • Autonomous • Teleoperated • End Game • Extension Limitations • Game Start • Autonomous • Teleoperated • End Game • Weight • Any Changes? • Prepare preliminary weight chart • Bumper Limitations	Lists of design parameters to share with the rest of the team

				 COTS Motors Pneumatics Wheels Other major changes Unusual Restrictions Storage of Game Piece Human interaction 	
3:15 PM	Cafe	JG/CE	Strategy	Split into smaller strategy groups. Determine relevant years for Legacy Strategy group.	
3:20 PM	Cafe		Strategy	Group 1: Tape down a full-sized field on the carpet in the cafeteria with wide masking tape. Include as many game elements as possible real scale. Will need to roll out both carpet in the Cafe.	Completed taped field
3:20 PM	G3		Strategy	Group 2: Begin legacy research on the years decided. Follow legacy research guidelines in the strategy powerpoint. Have group split into design subsystems (Ex: Intake, arm, shooter) to research separately. Try to get the photos as large on an 8.5x11" paper as you can without it getting grainy. Save this to the 1511 google docs.	-Large, good resolution photos for each chosen system. -Video links of the system in action
3:20 PM	G4	JG/CE	Strategy	 Group 3: Analyze the point and scoring rules provided by the team. Create a "match schedule". How much time for auto, teleop, endgame, etc Draw out a quick sketch of the field on the smartboard. On this, note: Starting positions Number of game pieces and starting locations Identify any "safe zones" on the field (anywhere that contact is illegal) Identify any "hard stops" or easy places to line up a score. List all the in-game actions that affect seeding/ranking (On Paper and Gdocs) Create a list of finite vs infinite ways of scoring Is there a max score to the game? Make note of any finite scores that can be taken away by opponents (IE: RC or minibot race) Make a chart of the ways the point value for the infinite and finite scoring values equal 	 Print out annotated field map Bring down paper lists of reviewed topics and strategies to present

I	1	5	11	B	UILD SEAS	ON					 List ways to ensure movement can be operated with minimal "line up" time Add a maximum time for this action to be considered viable. End Game List all actions required to complete end game	
					 c. Chain/Belt d. Pneumatically driven elements e. Electrically driven elements 5. Full prototype of idea using actual COTS a. Test contact materials b. Test speed c. Figure out how to control 						 Locking action to ensure task remains complete after match conclusion Create an end game timeline Identify all possible points associated with end game task Create a points comparison table between continue teleop scoring and the finite end game scoring. 	
	7:15 PM	Shop	RK/TC	Design	Group 2: Robot Component Design Scenarios (See steps 1-4 above)	A list of sketches, prototypes and ideas to share with team.					Identify all strategic benefits of completing end game Qualifications Ranking Elimination rounds Identify all situations where other robots	
	7:15 PM 7:15 PM	G4 G3	JG/CE	Strategy Strategy	Break into sub-groups. Group 1: Research/watch/read up on how the Ri3D teams are coming along. Be ready to present your findings Sunday morning. This includes what strategies the teams decide to go with, what mechanisms the teams are using to achieve their strategies, each team's prototyping techniques and other interesting/useful information you think the team can benefit from.	Documentation of each team's strategy, design, prototypes, and other. Use pictures and video to supplement your data.					might interfere with success of or decision to execute end game. <u>Autonomous Modes</u> • From the provided list of auto strategies, create a chart. For EACH strategy list: • Points • Starting Location • Game Pieces Interacted • Ways other robots could prevent success • Field features to sense • Difficulty Rank	
	7:15 PM	G3		Strategy	Group 2: Continue legacy research based on the guidelines above (the 3:15 timeslot). Continue research until there is an overwhelming amount of pictures/videos and data. Collect, compile, and print all research and color photos after showing a strategy mentor	-Large, good resolution photos for each chosen system. -Video links of the system in action -Make sure Carol or Josh has all of the research before group disbands.	9:30 PM	G4	JG/CE	Strategy	Reliability Rank Cost Benefit Analysis Use scoring info composed in earlier group session to create CBA. Goal: Identify most valuable actions in a match. Might need one table for Qualifications and one for Eliminations. Calculate "match score potential" Later, mechanical design difficulty can be added to identify what game actions can be done with the least amount of build season effort.	CBA
	7:15 PM	G4	JG/CE	Strategy	Group 3: In-depth strategic analysis. <u>Tele-Op Robot Movements</u> • List ALL possible robot movements in each of the teleop strategies provided • List ALL combinational robot movements • List ALL robot-robot interactions • Offensive • Defensive • Commit Penalties • Draw penalties from Opponent		11:00 PM	G4	JG/CE	Strategy	Create Strategic Priority list, followed by Desired Robot Functionality Priority list based on the CBA. Be prepared for one student and one mentor to thoroughly explain this decision in the morning. *Critical Path Deadline*	Strategic Priority List Desired Robot Functionality Priority List
					With Field Elements For Each Movement: Add an estimated time			2.2	LL = Larr JG = Josh E = Carol B	Goodman	RK = Roseanne Khaleel TC = Tom Cavalle AA = Amy Averill JD = Jeff Downs t JK = Jason Kuberka EB = Eric Brewer	

Beyond kick-off, the Robot Leads will should also produce task lists for each session with targets for subteams. Their role is to help subteams focus on design to the greatest extent possible.

MOTOR MOUNT

. CHECK CONFLICT IN BUNKER ATE. - CHECK CONFLICT IN CHECK PATH . DESIGN METRIC

2ATFORM

. RECTORE PART THANK

, DET NEW HAND STOP DUGS FOR

· RAMP SUPPORTS -7

LATES :

- TAM CHANGES PER MOTOR POTO?
- SET SUMMOTT WEATHING (14" & BAJON WI WORDS
- , ADD ASSEMBLIES & CHECK
- * TIME FOR BEFER?
- C MALE WAS TRANSES (F MTG. DAYCKET)

MAKE DUG. -> SHOP

ILEY:

LDUSION PULLY FOR HOM

KICKSTANTER:

, ADD TO TRATTORNA CHECK

HINGES;

- . The DESIGN FOR STRENGTH & QUICK RELEASE PIN.
 - MUST MAINTAIN PILAT POINT! -SEE DIAGRAM
 - * MUST SHITT WHERE IT MOUNTS TO HINGE (UELS INTERPERENCE

CABLE RELEASE STAING DEPLOY

, STILL WORKS!

. WHAT SPRING

, CONFLATE DESIGN

WEIGHT: 15.25 GOAL PLATFORM - 10.80 PLATFORMEY- 3.25 HINGES(EST) - 1.00 WROLTS

CHAIN - 3G

CHOPAD -

16?

15.66

Finally, the last 10 days or so of Build Season may also need a detailed schedule:

1511 HOME STRETCH								FIN	NAL 2 W	EEKS		i		RALLY			STOP
Task	Mentors	Students	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
IELD:						3											
Fix ramp approach Bring out defense elements for testing (PORTCULLIS, PAMPART_MOAT_EPICE_LOW_PAR)	Jason		_			21) (c)				10					5		124
RAMPART, MOAT, FRISE, LOW BAR)	Jason																
RIVE BASE: Add weight to robot for testing	Larry	TBD															-
Make Nylon skid plates, mount & test MOAT	I om, Konan, Mark,	TBD															-
	Larny	TBD		<u>.</u>			-								3		-
				_													
Test out bending tabs on cut c-channel	Dave	Maksym?		E.	-	2							-		3		
Fix 159 & 109	Roseanne	Aaron			6	4							-				
BREACHER: Do temp assembly of arm - no beater bar or motor - mount on robot	Roseanne, Don	Mandy, Calvin, Casey, Andrew															
LESLOD PORTCOLLIS, LOW BAR, and CHEVAL DE	Roseanne, Don	Mandy, Calvin					-								0		
ERISE SCALER:	Koseanne, Don	Pididy, Calvin		-		5	-			5			-				-
Clarify "Chamtek" shop drawings and set aside materials and modify as needed for Tony to fab	Christian. Roseanne	Hannah															
Final items on Shoppping List for Chamtek Parts	Christian																
DRIVE BASE.	<i>b</i>							() () () () () () () () () ()								31	
Implement final changes (nylon skids, cut c-channel at front, raise bumpers)	Tom, Rohan																
Put skid rail and skid plate in drive base	Tom, Rohan																
Install battery box	Tom, Rohan																
Parts for Robot 2	Dave, Bear, Mark						-										
Assemble Drive Base Robot 2 (including skid rail & plate	& battery)										3						
Final adjustments robot 1																	
BREACHER:	Province Province																
Make adjustments to arm for bumper	Roseanne, Don	Mandy, Calvin Casey, Andrew,			1												
Final Mounting on Robot 1	Roseanne	Casey, Andrew, Mandy, Calvin															
Assemble Robot 2 (as far as possible)	Roseanne	Mandy, Calvin				4											
Mount on Robot 2	Roseanne	TBD															
SCALER: Assemble shoulder	Roseanne	Geoffrey, Matt		-			_	_								-	_
Mount Shoulder Robot 1 (including motors)	Roseanne	Geoffrey, Matt	-														-
Assemble Arms (parallel teams)	Christian, Roseanne	Hannan, Jan,		-												-	-
Alt assemble arms	Christian, Roseanne	TRD Hannah?															-
Tap #2 holes in roller bearings	Tony	naimain	-				-						-				-
Make strap parts	TBD	TBD				51											
	Don	TBD	1		-	12							-	-			
Mount arm on robot 1	Roseanne	TBD	-			11			DAY								101
Mount strap & hook on Robot 1	Roseanne	TBD	1								DAY		DAY				
Alt mount arm robot 1 (late tube delivery)					-		-						DAY				
Mount shoulder & arm on Robot 2	Roseanne, TBD	(Roseanne not her	re 2-20)														
ELECTRICAL & SENSORS:										8							
Build electrical panels	Daves	Catherine, TBD		-				1									
Mount electrical panels & wire robot	Daves	Catherine, TBD							EVE								
Alt wire scale arm	Daves												EVE	1			
Make shop sensor parts	Jeff	Zack, Brett															
Mount sensors (to extent possible)	Jeff	Zack, Brett				1											
Electrical & sensors Robot 2	Daves, Jeff																
PROGRAMMING & DRIVING Programmers & Drivers share robot	Jeff, Carol	-													-		-
Final adjustments	Jeff, Carol					14											
Shop part fab & assembly are suppplemented with Dave F, I		ar and others as av	ailable											-			

Now let's talk about RESOURCES:

Money: Know your budget and track your budget. You will need to make key decisions about the robot design related to cost:

- \$ for raw materials? Inventory what you have.
- \$ for COTS? Can you take COTS from previous robots? Can you afford new?
- \$ for prototyping?
- \$ for second robot?
- Control shipping costs

1511 maintains a cost conscious approach in order to show our sponsors that we are not wasting funds:

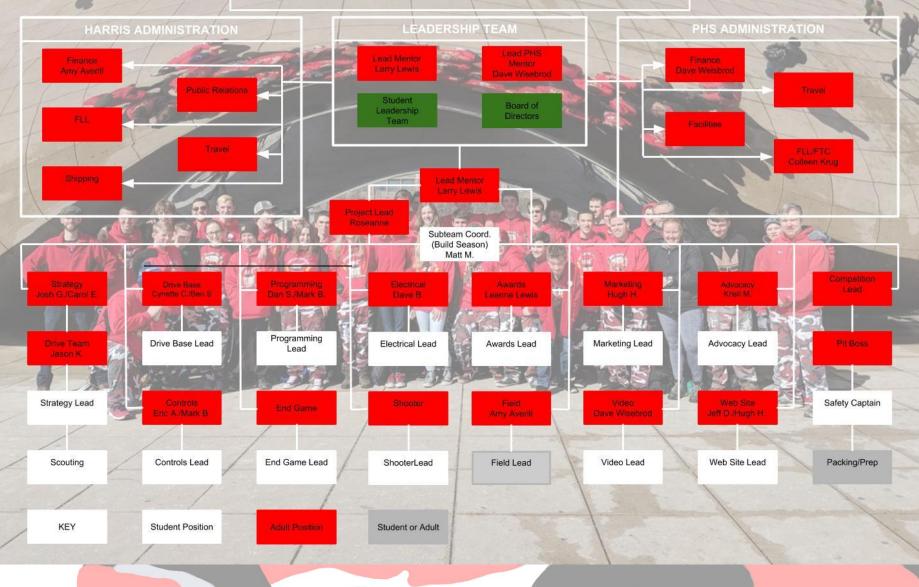
- We salvage materials and COTS from all of our second robots.
- We use new motors on our competition robot. We buy replacement gears to rebuild transmissions. We use old motors for prototyping and spares during competition.
- We salvage all of our unused aluminum. We reuse old parts for stock and for robot 2.
- We salvage all COTS.
- We use salvaged materials, including saved drive bases for prototyping.
- Our purchases are tracked and part of our aggressive schedule is an attempt to get long lead items quickly and limit shipping costs.
- We choose suppliers that have reasonable shipping policies whenever possible.
- We recycle anything we no longer have a use for, including wiring.

Equipment and Space:

- What are my available work areas and what equipment do we have access to. These are critical questions for both schedule and robot design:
 - CAD? How many stations? This will impact the number of subteams you can have, or if no CAD, the schedule may shift to provide longer prototyping and documentation by sketch, photo, etc.
 - Shop? What equipment do I have? CNC? Break? Drill Press? Lathe? Mill? This will determine the basic approach to design.
 - Outsourcing: Do I have any mentor shops available to use?

1511 Equipment and Space:

- We use two high school tech classrooms with over 15 CAD stations each.
- We use Inventor because that is what the tech classes use.
- We use the high school metal shop that contains high school equipment as well as equipment the team obtained. We have a lathe, a mill, a break, drill presses, a band saw, a horizontal band saw, a sander, and many hand tools.
- We have access to the high school wood shop if needed.
- We have storage space to keep some completed robots for examples and for use in driver training and practice.
- We have storage space for all of our COTS supplies, raw materials, batteries, and toolboxes.
- We have access to mentor shops, our primary one being Harris where we can have sheet metal parts made.


People: You need to determine who on the team is doing what during build season. I am going to focus on the robot build. However there are other things needing attention:

- Our organized parents handle meals during build season
- Our parents, teachers and Leadership handle all aspects of travel.
- We have mentors and students dedicated to Chairman's and other awards.
- We have mentors and students dedicated to marketing throughout Build Season.
- We all work hard to honor and respect these contributions and acknowledge that they allow the rest of us to focus on the robot build.

1511 BUILD SEASON TEAM STRUCTURE

A STAR

1

Team Leader: Larry L.

Robot Project Lead: Roseanne K. (Mentor) Matt MO. (Student)

					Eric A.	Dave B.	Jeff D
	Primary Mech	anism: Game Piece 1		Extra	S L	- 1	
				(Game Piece 2)	-		
Drive Base & Frame	Intake	Outtake	End Game	(Obstacles)	Controls	Electrical	Programming
					ST	JDENTS	
Ethan P. (Co-Lead)	Matt D. (Lead)	Matt D. (Lead)	Rachel B. (Lead)	Kate M. (Co-lead)	xx (Lead)	Julia P. (Lead)	Josh L. (Lead)
Julia P. (Co-Lead)	When	rever Needed:		Joe MC. (Co-lead)	xx (Lead)	XX	хх
x	xx	XX	XX	XX	xx (Lead)	xx	XX
OX .	xx	XX	xx	XX			XX
x	xx	XX	xx	XX			
x	xx	XX	xx	XX			
x	xx	xx	xx	XX			
					ME	NTORS	
Ben S. (Lead)	Tom C. (Lead)				Mark B.		Mark B.
	Dave B.						Dan S.
		analy	tical and design support	Christian Stoeckl			
		1940					
						Shop Mentors	
Available Students						Deere	
Available Students						Bear	
Available Students						Tony DS.	

Robot Project Leads (Robot Build Leads):

- Keep track of all parallel and overlapping processes from start of robot to finish (Einstein).
 - Subteam progress
 - Daily and weekly targets
 - To do lists for subteams
 - Documentation and tracking (robot weight, parts, assemblies, purchases, outsourced parts, etc.)
 - Student Robot build Lead conducts integration meetings.
- Facilitate subteam coordination and integration.
- Shift resources around when needed.
- Maintain the schedule.
- Report to the Team Lead and Student Leadership.
- Coordinate with outside resources.

Must be willing to get yelled at and have a lot of "discussions" – must be able to stay COOL and EFFECTIVE in the face of team members who are concerned, upset, disappointed, frustrated, irate, and/or in full on panic!

- Component Leads:
 - A solid mentor and a solid student lead for a component subteam will get you 80% there.
 - Look for the following traits:
 - Ability of the mentor to let the student come up with the design ideas and guide them not tell them what to do.
 - Ability of the mentor and student to think specifically and globally simultaneously.
 - These leads will have to follow the schedule, provide direction for their component group, provide feedback to the Project Leads, coordinate with other subteams, and represent their subteam during Integration Meetings.
 - Ability of the lead student and lead mentor to break it down into parts and delegate.
 - COMMUNICATION SKILLS and CONFIDENCE: They need to do all of the above while doing their best to inspire their group.

Only have as many subteams as you have strong willing students to lead and mentors to pair them with. This will limit what you do, but it will also ensure what you do is completed.

Do not base student leads on grade level or seniority. Choose based on design and communication skill. If you have an overabundance of qualified candidates, then grade level or seniority could be one factor in the decision.

Student lead is a voluntary position – it should not be assigned.

Long term, student lead for robot component design should be a desired position. If it is not, try to find out why students don't want to take on the challenge.

Do not discount alumni. While I would not advise giving alumni official positions when they are that transition period of not being full mentors due to age, they can still be added to subteams for support (even if it's only for the first week while they are on break).

Notice I said nothing about engineering experience yet! Knowledge of mechanical design is needed. But the level of knowledge needed is flexible.

- What do I mean by that?
 - Look at what your resources are not every team gets to have engineers on them:
 - Teachers
 - Architects & Contractors
 - Garage "mechanics", "inventors", "builders"
 - FIRST alumni
 - Professors

There are tremendous design resources available through the FIRST community to allow for thinking outside the box when it comes to robot design mentors. Basic mechanical knowledge may be available through any of the above (and many more). Keep an open mind.

- Now let's talk about design.
- **Phases:**
- 1. Gathering information (Saturday kick-off)
- 2. Ideas
- 3. Component Evaluation
- 4. Prototype, CAD, Calculate
- 5. Component Review
- 6. Whole Robot Review
- 7. Decision Time

Robot Design Mantras

YOU MUST MAKE THE BEST DECISION YOU CAN WITH THE INFORMATION YOU HAVE AT THE TIME YOU NEED TO MAKE ITIIIIII Schedule is our most restrictive element. We must respect Larry's schedule – target dates are there for a reason!

If we take the time to vet, proto and test every idea we have we will not have time to build a competitive robot. We must quickly test, evaluate, and whittle down to 1. This is the purpose of prototyping.

If the entire team has to be involved in every step/decision we will not have a competitive robot. We must trust each other.

We must rely on the experience and judgement of mentors when making design decisions!

We must acknowledge and support what makes students enthusiastic about robotics in making design decisions!

When we work in subgroups, when a decision has been reached and documented, WE MUST RESPECT THAT AND COORDINATE WITH THAT DECISION. This includes Strategy decisions.

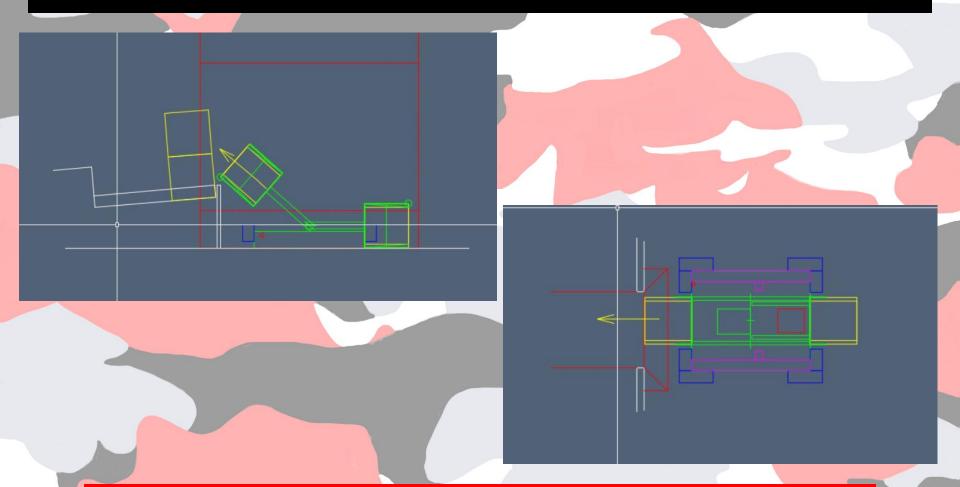
- A decision isn't made until Larry has been fully informed and ok'd the decision.
- A decision isn't documented until Roseanne knows about it. Documentation during design is located in the Robot Binder #2. Ideally it will also be on the WIKI.

The Starting Point: GOALS!

- Strategy sets robot function priorities
 - As much useful detail as possible
 - Speed goals
 - Timing goals
 - Acceleration goals
 - Discussed in an afternoon panel by students

Match Timing Analysis

Red= Must Make Clear To Ref

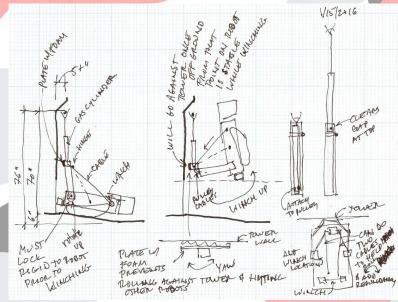

	Must	Want	
Action	Time(sec)	Time(sec)	
Portcullis		3	1.5
Chevel De Frise		3	2
Moat		1	0.75
Ramparts		1	0.75
Drawbridge Front		5	4.5
Sally Port Front		4	3.5
Drawbridge Back		4	3
Sally Port Back		3	2
Rough Terrain		1	0.75
Rock Wall		1	0.75
Low Bar		1	0.75
Scaling		5	3
Low Goal		2	1
Acquire Ball		2	1
Top Speed	4.5 m/s		
Acceleration	3 m/s ²		

Part of match	Action			Time(sec)
Autonomous	Traverse to	Courtyard	İ	5
Autonomous	Insert Ball I	nto Low G	oal	10
Autonomous	Set Up to C		Contraction of the second s	15
Tele-op	Time It will			20
Tele-op	a full breact		Carl and the second	25
Tele-op	outer work			30
Tele-op	during auto		pictou	35
Tele-op	daning date	nomous		40
Tele-op				45
Tele-op				50
Tele-op				55
Tele-op				1:00
Tele-op				1:05
Tele-op		Bring	Score As	1:10
Tele-op	DEF	balls from	Many	1:15
Tele-op		Human	balls	1:20
Tele-op		Player To	as	1:25
Tele-op		oponents	possible	1:30
Tele-op		courtyard	into the	1:35
Tele-op			low goal	1:40
Tele-op		~5 balls		1:45
Tele-op			~ 4 balls	1:50
Tele-op			and a second second	1:55
Tele-op				2:00
Tele-op				2:05
Tele-op				2:10
End Game	I I and	10		2:15
End Game	Hang	a/Ca	p	2:20
End Game	And a second second		1 N N	2:25
End Game				2:30

Strategic Priority	Desired Robot Functionalities
1 Drive	High Maneuverability: Turn on a dime quickly
	High Acceleration/Torque
	Able to traverse cable bump
	Able to climb platform
	Accurately accomodate complex auto modes that involve drive - turn - drive
2 Power Cube Ground Intake	Extremely quick "Touch it- own it" intake system
	Able to intake a cube in any cube orientation
	Able to intake with very low driver precision - majority of drivetrain side
3 Hold Cube Securely	Cube stays in place while hit or under high speeds/change in direction
	Cube must be loaded from the intake to a scoring mechanism as close to instantaneously as possible.
	Robot prevents second cube from accidently being intaked or placed anywhere on the robot
	Must be able to load and unload cube with robot powered off
Eject Cube into Exchange Zone	Eject cube quickly, powerfully, and accurately into the exchange with very little driver precision
Lift two robots so that their bumpers are 12" 5 up while on the platform	Be able to reliably and safely deploy a lift system on the platform in 2 sec
	Lift system must be securely stowed into the starting configuration until
	Lift system must be accessible to any robot that can already climb the
	Lift system must hold 150lbs per lift for 40 seconds
	Lift system must elevate robot's drivebase to at least 11" off the platform
	Lift system must safely handle robots after robot has been powered off
	Lift actuation must be controlled one side at a time
	Lift actuation may be undone and redone
	Robot must be able to be moved onto cart in a timely manner at match end when lift has been deployed
	Cube must be able to be scored quickly into the switch platform in at least
5 Eject Cube into Switch	two layers
	Cube must be capable of being scored accurately during Auto
7 All robots cross Auto Line Vision for Auto Modes/Additional Auto 8 Capabilities	Code a Auto Line Program in all available FRC programming languages
	Interpret FMS Data at t=2:30
	Sense switch proximity through Camera/Vison
	Sense Exchange proximity through Camera/Vision
	Sense Cube Location through Camera/Vision

Gathering Information:

- Robot Rules
 - Physical limitations:
 - Size or volume(s) of robot or drive base
 - Starting configurations
 - Travel configurations
 - Crate configurations
 - Extension planes
 - Bumper rules/constraints
- Additional Dimensional constraints
 - Field: terrain
 - Game pieces

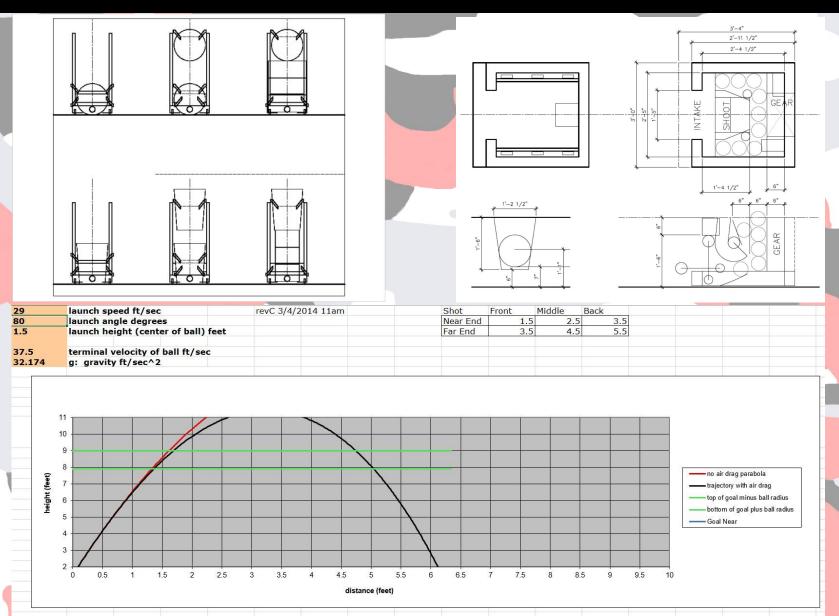

YOU MUST LOOK AT EVERY INTERACTION BETWEEN THE FIELD AND THE ROBOT!

• Quick sketches to convey ideas

- Hand drawn
- Legacy research
- "Origami"
- 2D CAD

Ideas:

- Component Evaluation
 - Review all ideas


- Narrow down to the number you can
 - effectively prototype/develop in time frame

Prototype:Limited time

CAD & Calculate:

- As much preliminary information as the subteams can put together in the time frame:
 - Strategy goals
 - Field interactions
 - Game piece movement
 - Motor calculations
 - Weight budget

- **Final component evaluation:**
- Present any information you have for each idea selected for further study.
- Narrow down to proven viable ideas no more hand waving, no more "I just need a little time"!
- Use weighted analysis if too difficult.

WEIGHTED ANALYSIS FOR SCALE ARM

1511 Stronghold Game 2016

	3		APP	LICABLE	TO ANY	MECHA	NISM		1	SPE	CIFIC TO	SCALE /	ARM	
Description:	Weight	Space Allocation	Design complexity	Assembly complexity	Controls complexity	No. of drivers	Repairability	Team Familiarity	Reliability of mechanism	Ability to maximize length of arm	Possibility of tangling/binding	Repeatability of motion path (aim)	Adaptability for future mods?	Totals:
Weight given to					-			-						
attribute:	4	10	7	5	8	6	8	3	8	8	8	10	5	
Scissors	4	3 partially deploye	5	3	4 to fine adjustme	nt	5	1	3	3	2	1	1	250
Nested Cable	2	2	4	5	3		3	2	4	4	2	5	2 best if round	275
Nested Chain	1	1	4	4	3		4	3	5	4	4	5	5	306
Pulleys/Slide	2	1	4	4	3		3	2	4	4	3	5	5	283
Spring/Cable	3	3	3	1 ways wants to op	3		1 get to the spring	, 1	3	2 overlap	2 Friction/spring	4	2	209
Fish Tape/Slide	2	2	4	4	3		3	2	3	4	2	5	4	272
Folded/Spring	4	5	two paths 5	1 ways wants to op	5		5	1	no research	1	two paths	1	1	228
				8	all have to 1 - p	ivot, 2 - motor u	ip, 3- motor dowr							0
														0

1/14/2016

WOT Table 2018 POWER UP 1511 Rolling Thunder

Weighted

Score

Outboard Top Roller

Open-Sided

Weighted

Score

Score

(1-5)

Side Roller Feed to DB

Intake

Weighted

Score

Score

(1-5)

Outboard Side Roller

Hand

Score

(1-5)

Alternate weighted analysis:

Robot Build should pause at the end of this and determine whole robot configurations to evaluate:

- Ability of components to share real estate:
 - And is the result a balanced robot with low CG?
- Negative interactions or cross purposes.
- Opportunities for shared weight:
 - Pneumatics?
 - Infrastructure?
 - **Overall use of motors and breakers.**

The final decision on robot design should be based on a "whole robot" review.

Once this decision is made it should not be changed for any reason – and I really mean that. This is the hardest part, but subteams should leave this session with clear direction on what they are doing and what their allocated area, motors, etc. are.

This is also the most difficult thing to do – 1511 has never been completely successful at following this rule and it has NEVER benefitted us when we broke it.

You are only at day 6-8!!!

Detailed design by subteam should commence after the whole robot decision is made:

- Detailed calculations "Calculate don't speculate"
 - Use available calculators when possible.
- Employ protocols, protocols, protocols
- Begin Integration

Detailed calculations – "Calculate don't speculate"
Use available calculators when possible.



Detailed design

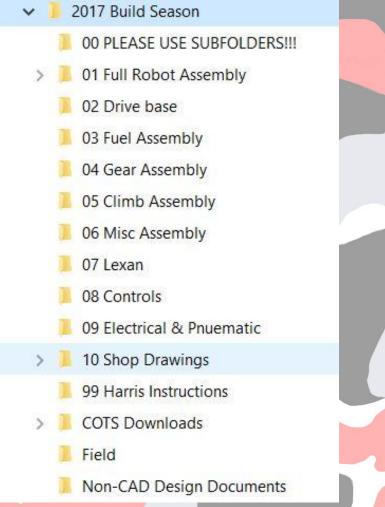
Air Usage Calculator

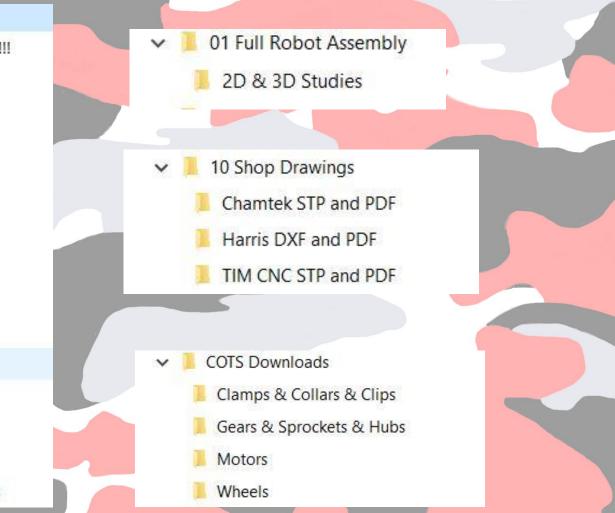
	System Pressure	Volume (in³)	Rate (CFM)	Work (P1V1)	Min Press	Time (min)	Work (in-1b)
Accumulator	115	30.5		3956	60		1677.5
Compressor			0.36	9145		2	18289

Name	Cycles	Stroke	Diameter	Quantity	Tubing "	Pressure	Work
Transmission	25	1	0.75	2	12	30	2980
Latch	6	4	0.75	1	16	60	1764
Latch Small	6	2	0.75	1	16	60	1016
Intake Large	8	8	0.75	2	18	60	8692
Intake Small	8	3	0.75	2	18	60	3705
Stop	16	1	0.75	1	9	60	1710
							0
							0
Total Usage							19868
Capacity							19967
Surplus/Deficit						+0.5%	99

Integration: Integration meetings occur 2-3 times per week. They are an opportunity for ALL subteam leads (that includes electrical, programming, controls, strategy) to get together and address issues related to the integration of the entire robot.

- It is not a design session and should not devolve into one.
- It is intended to bring up issues needing resolution or answers and to delegate responsibility and set target dates for completing the task.
- It is also an opportunity to review weight as the robot progresses.
- It is a way to keep everyone informed and accountable.

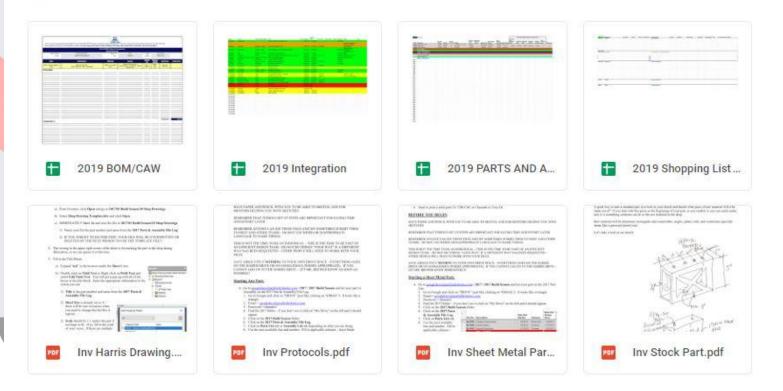

					_				J	
Status	Group	Person Responsible	Goal	Date Assigned	Goal	New Goal	Days Behind	Date Completed	Notes	Key
Complete	Drive Base		Put top of DB on the Wiki (4.5 in)	1/13/2018			-	1/13/2018		
Complete	Everyone	Rosanne + Matt S	Put robot volumes in CAD	1/13/2018	1/14/2018	1/23/2018	3		move into detailed robot	t
Complete	Drive Base	Jordan + mentor	Look at battery layout for the robot (back?)	1/13/2018	1/14/2018			1/20/2018	3 mechanisms	
Complete	Arm	Matt S/D + mentor	Establish the arm pivot point	1/13/2018	1/14/2018			1/16/2018	3 20" above ground plane	
Complete	Everyone	Leads	Determine actuators and motors and put it on the Wiki	1/13/2018	1/16/18	1/21/2018	3	1/23/2018	3 Ongoing, need ASAP	
Complete	Those Who Use Pneumatics	Student + Mr. Stoeckl	Check pneumatics supplies	1/13/2018	1/14/2018			1/16/2018	3 lacking devices	
Complete	Everyone	Michael N	Chart of motors/functions	1/16/2018	1/18/2018			1/18/2018	3	
Complete	Ramp	Dave V + Matt M	Resolve Dimensional Issue	1/16/2018	1/18/2018	1/21/2018	3	1/23/2018	3	
Complete	All Groups	Roseanne	Preliminary CAD Review	1/16/2018	1/18/2018			1/18/2018	3	
Complete	All Groups	Roseanne	Final CAD Review	1/16/2018	1/25/2018	1/28/2018	3			
In Progress	All Groups	Leads	Weight Estimate	1/16/2018	3 1/18/2018					
Complete	Drive Base	Jordan S + Ben S	U-Channel Drawings	1/16/2018	8 1/17/2018			1/21/2018	3	
Complete	Drive Base	Julia + Cynette	Locate Bumper Mounts	1/18/2018	1/21/2018			1/20/2018	3	
In Progress	Everyone	Leads	Coordinate Mountings to Drivebase	1/18/2018	8 1/21/2018	1/25/2018	3		waiting on ramps	
In Progress	Everyone	Leads	Preliminary Sensor Info	1/18/2018	8 1/21/2018	1/28/2018	3		chart on wiki/excel file	
Complete	Casey & Calvin	Larry	Color Coordination Committee	1/18/2018	1/20/2018					
Complete	Mechanism Groups	Leads	Calculate pneumatic usage	1/23/2018	1/25/2018	1/28/2018	3			
Complete	Mechanism Groups	Leads	total pneumatic components needed	1/23/2018	1/25/2018	1/28/2018	3			
Not Started	Drive Base	TBD	Robot Cart	1/23/2018	B TBD					
In Progress	Everyone	Leads	Deciding where shielding is going	1/27/2018	B TBD					
In Progress	Everyone	Leads	"keep out" areas for the cubes	1/27/2018	B TBD					
In Progress	Drivebase	Ben	Check conflict with camera	2/6/2018	3 2/7/2018					
In Progress	Pneumatics	Jordan	order air tanks	2/6/2018	8 2/7/2018					


А	D	U	U	C	Г	9	п	1	J	۲ ۱	
Weights		Estimates									
92.50	Budget	1/17/2016	1/23/0206	1/30/2016		1/21/2016	2/2/2016	2/6/2016	2/7/2016		2/13
General:											
Hardware (Nuts & Bolts)	5	5	5	5		5			5		
Pnuematics Infrastructure	8	1	1	1	tank only	1					
Electrical	17	17	17	17		17			17	(5 CAD)	
Paneling (Sponsors, Safety)	4	4	4	4		4			4		
Subtotal	34	27	27	27		27	0	0	26		
Specific:											
Drive Base	36	36	45	38		45. <mark>5</mark>			47	(actual)	
Breacher/Intake Arm	16	16	17	13		10			13	(CAD)	
Scaler	20	29	29	28	No	26			30	Estimate	
Category C	10	10		8	Lightening no strap no	8					
Lights					brake				0.5	(Budget)	
Skid Plates				3		3			4	(CAD)	
Future Improvements	4	4	2	3		3					
Subtotal	86	95	93	93		95.5	0	0	94.5		
Total	120	122	120	120		122.5	0	0	120.5		
Total Check	120			120							
Total Allowed	120										
Whole robot CAD						80.343					
Subtotal 3 subteams CAD						81.5					

Protocols: For a consistent Robot Build you should have protocols for communication, design, manufacture, assembly, just about everything!

- Discussion: Slack "Robot Design" Channel
- Documentation:
 - School Drive: All CAD files, shop drawings and basic robot build work product.
 - Google Drive: Files that need to allow simultaneous editing:
 - Shopping List
 - Parts & Assembly Log
 - Integration spreadsheet
 - Detailed Schedules
 - Documentation of decisions and critical robot design elements:
 - WIKI
 - Robot Design Binder
 - Documentation of parts for fabrication:
 - Shop Binder
 - Documentation of Assemblies:
 - Shop Binder

File Management on school drive : Organized based on subteam



Google Drive:

My Drive > 2019 > 02 Build Season -

Files

Name 1

Parts & Assembly Logs: Track each manufactured piece in the robot from design to assembly by assigning a part number and tracking progress on the log.

In addition, part tracking numbers are used by Robot Leads to:

- Create priority lists for fabrication in the shop.
- Coordinate and track parts made by Harris and other mentor shops.
- Store parts on designated shelves so parts can easily be found during assembly.
- Check that all parts are in the BOM.

A	в	C D	-	F	G	н		3	ĸ	L	M	N	0	- P	ų	ĸ	5		U	v	
N	Parts Log												FOR PAR		TSIDE THE SH	OP ONLY					
																			STL File		
		Det. D. I		0		Date Part	Approved to		Oh David	Shop		STP Made		DVC M.	B	Dennis	Part		Made (for		
Part No	Description	Date Part Started	Subteam	Quantity per Robot	Designer	Design	make shop drawing	Approved by:	Shop Drawing	Drawing Made Date	Status in Shop	Date (Chamtel		DXF Made Date	Drawings Sent By	Drawing Sent Date		Paint Color	3d	Notes	B
Ex P001	Chassis Frame brace		Drive train	4	Joe Schmoe, Tom Thumb	1/8/2013	Y	Tom Cavaliere	Joe Schmoe	1/10/2013	Robot 1 Done	(Only)	Date	Date	Sent by	Sent Date	Shop	b	printing)	notes	8
	Control Panel		Controls	NA	Tom Thumb	1/17/2013	Y	Mark Byers	Jim Cricket	1/18/2013	NA	1/27/2013	1/27/2013	1/27/2013	Mark Byers	1/27/2013	Y	r			
	Support Stanchion	1/12/2013			Tinker Bell	1/15/2013		Roseanne			Not Started							b			
	RED = HARRIS																				
	GREEN = HIGH PRIORITY BLACK = OBSOLETE PART																				
	PURPLE = CHAMTEK																				
	YELLOW = 3D PRINTER																				
	CYAN = TIMS CNC																				
P001	WHITE = IN OUR SHOP!!																				
2001 2002																					
003																					
004																					
005																					
P006																					
P007																					
P008																					
P008																					
P009 P010																					
P011																					
P012																					
P013																					
P014																					
P015																					
P016																					
P017																					
P018																					
P019																					
P020																					
P021																					
P022																					
P023																					
P023																					
P025				1																	17
			-																		
																					ĺ
								2													

W	Parts Log			The second se				J	n.	1	IVI	Ē
Part No	Description	Date Part Started	Subteam	Quantity per Robot	Designer	Date Part Design Done	Approved to make shop drawing	Approved by:	Shop Drawing Made By	Shop Drawing Made Date	Status in Shop	5
Ex P00	Chassis Frame brace	1/4/2013	Drive train	4	Joe Schmoe, Tom Thumb	1/8/2013	Y	Tom Cavaliere	Joe Schmoe	1/10/2013	Robot 1 Done	
)6 P173M	Diagonal Brace Mirror	1/27/2018	Cube Arm		Matt Sowden							E
)7 P174	Arm Inside Support Plate Brake Side	1/28/2018	Cube Arm	1	Andrew Fabrizi	1/28/2018	Yes	Roseanne	Matt Sowden	1/28/2018		
98 P175	Cube Middle Lexan Alternate 1	1/28/2018	Cube Arm	1	Casey Stubblebine							
99 P176	Bimba Air Cylinder Mount	1/28/2018	End Game	2	Ethan Pendelberry	1/28/2018	Yes	Dave Vadas	Matt McOmber	1/30/18		
00 P177	Cube Top Lexan Alternate 1	1/28/2018	Cube Arm	1	Casey Stubblebine							
)1 P178	Grabber Outer Spacer	1/28/2018	Transport	4	Matthew Darrer	1/28/2018	Yes	Roseanne	Tai Little	1/30/18	RB1+2 Done	
)2 <mark>P179</mark>	Grabber Pulley Spacer	1/28/2018	Transport	8	Matthew Darrer	1/28/2018	Yes	Roseanne	Tai Little	1/30/18	RB1+2 Done	
)3 P180	Lifter Brake Cable Mounting Block	1/28/2018	Cube Arm	1	Matt Sowden	1/28/2018	Yes	Roseanne	Zack Geoca	2/1/18	Robot 1 done	
)4 <mark>P181</mark>	Suspension screw Bracket	1/28/2018	End Game	2	Ethan Pendelberry	1/28/2018		Dave Vadas	Aaron Kurtz	1/28/2018		F
)5 <mark>P182</mark>	Upper Hinge Spacer	1/28/2018	Transport	2	Matthew Darrer	1/28/2018	Y	Roseanne	Alex Bishop	1/30/2018	RB1+2 Done	
)6 <mark>P183</mark>	Arm Spacer .087	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018	Y	Roseanne	Casey Stubblebine	1/28/18	RB1+2 Done	4
)7 P184	Mini CIM Plate	1/28/2018	DriveBase	TBD	Joe McCusker	1/28/2018	Y	C. Stoeckl	Joe McCusker	1/28/2018		
)8 P185	CIM Shaft Simulator	1/28/2018	DriveBase	TBD	Joe Mccusker	1/28/2018		C. Stoeckl	Joe McCusker	1/28/18	done	
)9 <mark>P186</mark>	Arm Spacer 1.414	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018	Y	Roseanne	Casey Stubblebine	1/28/18	RB1+2 Done	
0 P187	Arm Spacer .571	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018		Roseanne	Casey Stubblebine	1/28/2018	RB1+2 Done	2
1 P188	Arm Pully Alternate 1	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018	Ý	Roseanne	Casey Stubblebine	1/28/2018	RB1 Done	
2 P189	Brake Churro	1/28/2018	Cube Arm	1	Matt Sowden	1/28/2018	Yes	Roseanne	Alex Bishop	1/30/2018	R1 & 2 Done	
3 P190	Motor Spacer Plate	1/28/2018	Transport	1	Matt Darrer	1/28/2018	Y	Roseanne	Aidan Hand	2/9/18	RB1 Done	
4 P191	Arm Pivot Motor Mount Brace Front	1/28/2018	Cube Arm	1	Matt Sowden	1/28/2018	Y	Roseanne	Andrew Fabrizi	1/28/18		
5 P191M	Arm Pivot Motor Mount Brace Front M	1/28/2018	Cube Arm	1	Matt Sowden	1/28/2018		Roseanne	Andrew Fabrizi	1/28/18		<u> </u>
6 P192	Arm Pully Alternate 2 (Hex)	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018	Y	Roseanne	Casey Stubblebine	1/28/2018	RB1 Done	
7 P193	Lift Assembly Bracket support	1/28/2018	End Game	4	Ethan Pendelberry	1/30/2018		Roseanne	Ethan Pendelberry	1/31/18		<u> </u>
8 P194	Arm Spacer 2.063	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018		Roseanne	Casey Stubblebine	1/30/2018	RB1+2 Done	
9 P195	Arm Spacer .125	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018		Roseanne	Casey Stubblebine	1/30/2018	RB1+2 Done	
20 P196	Optical Sensor Mount	1/28/2018	Cube Arm	1	Casey Stubblebine	1/28/2018	Υ	Roseanne	Casey Stubblebine	1/28/2018		
21 P197	Lift Base Frame Center Members 36 Left	1/28/2018	End Game	1	Ethan Pendelberry	1/28/2018	drawing and	Roseanne	Calvin Morrison	1/28/18	needs nodified	
22 P197M	Mirror			1			у	Roseanne	Ethan Pendelberry	2/6/18	needs nodified	
23 P198	Lift Base Frame Center Members 36		End Game	1	Ethan Pendelberry	1/28/2018	drawing and	Roseanne	Ethan Pendelberry	2/6/2018	needs nodified	
24 P198M	Mirror	2/6/2018		1			Yes	Roseanne	Ethan Pendelberry	2/6/2018	needs nodified	
25 P199	Motor Mount Bearing		End Game	4	Rachel Benkovich	1/28/2018		Dave Vadas	Cameron Bradley	2/1/18		
26 P200	Lift Base Channel 36		End Game	4	Ethan Pendelberry	2/6/2018	Yes	Roseanne	Joe McCusker	2/6/18	RB1+2 Done	
27 P201	Lift Base Channel 32	1/30/2018	End Game	4	Ethan Pendelberry	2/6/2018	Y	Roseanne	Joe McCusker	2/6/18		
28 P202	Lift Base Channel 30	1/30/2018	End Game	4	Ethan Pendelberry	2/6/2018	8 Y	Roseanne	Joe McCusker	2/6/18		
29 P203	Lift Top Deck		End Game	2	Ethan Pendelberry							
30 P204	Lift top Deck With Cutouts	1/30/2018	End Game	2	Ethan Pendelberry	2/6/2018	N					
31 P205	assembly)	1/30/2017	End Game	4	Rachel Benkovich	2/6/2018	У	Dave Vadas	Cameron Bradley	2/1/18	Robot 1 done	
2 POORE	Rumper Corner Front	1/30/2018	DriveBase	2	loe McCusker	2/10/2018	V	C Stoeck	Trovin Ostheller		RB1 Done	

Shopping List:

	Requested Item	Part number	Quantity	Cost	ach Co	ost extended	Supplier/hyperlink	Requestor	Justification	Mentor Review	N Date Needed	Order By/Date	RX'd
						1	http://www.mcmaster.c	and a more star					
aster-Carr	Alloy Steel Shoulder Screw					9	om/	1					
	8mm Diameter 45mm Long Shoulder, M6 x 1.0mm	92981A250		6	\$2.77	\$16.62	http://www.mcmaster.c	Julia Paille	Drivetrain Idler Part	Ben S	ASAP	Larry 1/15/2018	1/17/2018
1/10/2010	The build	0200 IA200		U	\$2.11		https://www.mcmaster.	Julia i anc	Divergin for Fart	Den G	AGA	Lany more to	11112010
1/20/2018	Oil-Embedded Flanged Sleeve Bearing	6338K413		18	\$1.09	\$19.62	com/#6338k413/=1b7k	Andrew Fabrizi	Intake Pivot	Tom Cavaliere	1/27/2018	3 Larry 1/21/2018	1/23/18
112012010	on-Embedded I langed Sleeve Bearing	000011410		10	¢1.00		https://www.mcmaster.	, indicity i done	indice i not	Tom our anote			1720/10
1/20/2018	3/4"x1" 6061 Aluminum 3ft	8975K14		1	\$17.40	\$17.40	com/#8975k14/=1b7st9	Andrew Fabrizi	Intake Pivot	Tom Cavaliere	1/27/2018	3 Larry 1/21/2018	1/23/18
1/20/2010		09751(14			\$17.40		nttps://www.mcmaster.	Andrew Fabrizi	intake r ivot	Torroavancie	112112010	Larry 1/21/2010	1720/10
1/20/2040	2/4"-2/4"-4/46" Aluminum Tube 6ft	6546K52		2	\$15.56		com/#6546k52/=1b7sul	Andrew Fabrizi	Intake Pivot	Tem Caveliers	1/07/0044	Low: 1/21/2010	1/23/18
1/20/2018	3/4"x3/4"x1/16" Aluminum Tube 6ft	0046K52		2	910.00	\$31.12	anttps://www.mcmaster.	Anurew Fabrizi	Intake Pivot	Tom Cavaliere	1/2//2018	3 Larry 1/21/2018	1/23/18
1/20/2040	1/2" Aluminum Shaft 6ft	9062K31			\$35.81		com/#9062k31/=1b7sw	Andrew Fabrizi	Intake Pivot	Tom Cavaliere	1/27/2044	3 Larry 1/21/2018	1/23/18
1/20/2018	1/2 Aluminum Shart oft	9062K31		1	\$30.0I	\$33.61	20	Andrew Fabrizi	We could make these,	Tom Cavallere	1/2//2018	Larry 1/21/2016	1/23/16
1/29/2018	3/4° aluminum spacers	92510A767		16	\$1.45		nttps://www.mcmaster. com/#92510a767/=1bc 7y6k	Matt D.	but if okay, prefer precision of these (used in gripper hand between plates for spacing)	Roseanne	2/5	5 Larry 1/29/2018	1/30/18
							https://www.mcmaster. com/#9654k274/=1bc8i		Arm tensioner system (6 per robot plus some				
1/29/2018	Steel Extension Springs 4" length 68.4 lbs/inch	9654K274		16	\$6.54	\$104.64		Roseanne	spares)	Roseanne	2/5	5 Larry 1/29/2018	1/30/18
		10 105//71 1			05.00		https://www.mcmaster. com/#48435k71/=1bbta		Relief valve for		By Robot 1 start	1/00/0010	1/00/10
1/28	Fast-Acting pressure relief valve 125 PSI version	48435K714		2	\$5.26	\$10.52	b2 https://www.mcmaster.	Jeff	pneumatics	Dave	assembly	Larry 1/28/2018	1/30/18
	Linear Motion Shaft, Ceramic-Coated 6061 Aluminum, 3/8" Diameter, 48" Long	1031K78		2	\$35.81	\$71.62	com/#aluminum- rods/=1bdzkwo		Lift Jack	Dave V.		Larry 2/1/2018	2/6/18
2/1/2018	Lead Screw Nut 3/8-10	95072A127		6	\$24.95		https://www.mcmaster. com/#95072A127	Tai Little	Lift Jack	Dave V.		Larry 2/1/2018	2/6/18
	Lead Screw Clamp Collar (024 Aluminum Shaft Diameter 3/8" OD 7/8" Width 3/8" Clamping Screw					1	https://www.mcmaster. com/#6436k133/=1bds						
	Socket Head)	6436K133		18	\$5.22	\$93.96	<u>0y0</u>	Tai Little	Lift Jack	Dave V.		Larry 2/1/2018	2/6/18
2/1/2018	Lead Screw Die Spring (Blue Closed and Flat 1" OD 0.5" ID Length 6" Wire 0.100" Width 0.215" Flat Compressed 3.6" Maximum Deflection 40% Maximum Load 192 Ibs. Load Rating Medium Deflection 25% @ 120 Ibs. Rate 80 Ibs./in.)	9573K61		4	\$10.82		nttps://www.mcmaster. com/#9573K61	Tai Little	Lift Jack	Dave V.		Larry 2/1/2018	2/6/18
	Surface-Mount Hinge, Self-Closing, Unfinished Steel, 5" x 1" Door Leaf	15205A12		1	\$4.90	\$4,90		Larry	Ramp Deployment	Roseanne		Larry 2/3/2018	2/6/18
	Surface-Mount Hinge, Self-Opening, Unfinished Steel, 5" x 1" Door Leaf	15205A78		1	\$4.90	\$4.90		Larry	Ramp Deployment	Roseanne		Larry 2/3/2018	2/6/18
2/1/2018	Jack Shoulder Screw	91259A175		40	\$1.98	\$79.20	https://www.mcmaster. com/#91259A175	Tai Little	Lift Jack	Dave V.		Larry 2/1/2018	2/6/18
2/1	Lead Screw 6 ft long bars	98940A010		4	\$63.08		https://www.mcmaster. com/#98940A010	Tai Little	Lift Jack	Dave V.		Larry 2/1/2018	2/6/18

CAD Protocols:

1511 Inventor Protocols

BEFORE YOU BEGIN:

HAVE PAPER AND PENCIL WITH YOU TO BE ABLE TO SKETCH, AND FOR MENTORS HELPING YOU WITH SKETCHES

REMEMBER THAT TEDIOUS SET UP STEPS ARE IMPORTANT FOR SAVING TIME AND EFFORT LATER

REMEMBER ANYONE CAN SEE THESE FILES AND WE SOMETIMES SUBMIT THEM TO FIRST AND OTHER TEAMS – DO NOT USE WEIRD OR INAPPROPRIATE LANGUAGE TO NAME THINGS.

THIS IS NOT THE TIME TO BE AN INDIVIDUAL – THIS IS THE TIME TO BE PART OF AN EFFICIENT DESIGN TEAM – DO NOT DO THINGS "YOUR WAY" IF A DIFFERENT WAY HAS BEEN REQUESTED – OTHER PEOPLE WILL NEED TO WORK WITH YOUR FILES.

SAVE ABSOLUTELY **NOTHING** TO YOUR OWN DRIVE SPACE – EVERYTHING GOES ON THE HARRIS DRIVE OR ON GOOGLEDOCS (WHERE APPROPRIATE). IF YOU CANNOT LOG ON TO THE HARRIS DRIVE – LET MR. BREWER KNOW AS SOON AS POSSIBLE!

Starting Any Part:

- A. Go to 2017 / 2017 / 2017 Build Season and list your part or Assembly on the 2017 Part & Assembly File Log:
 - Go to Google and click <u>on "DRIVE</u>" (just like clicking on "GMAIL"). It looks like a triangle.
 - 2. Email =
 - 3. Password =
 - Find the 2017 folder if you don't see it click on "My Drive" on the left and it should appear.
 - 5. Click on the 2017 Build Season folder.
 - 6. Click on the 2017 Parts & Assembly File Log.
 - 7. Click on Parts List tab or Assembly List tab depending on what you are doing.
 - Use the next available line and number. Fill in applicable columns leave blank columns where you do not have the info yet.

B. Sheet Metal file set up:

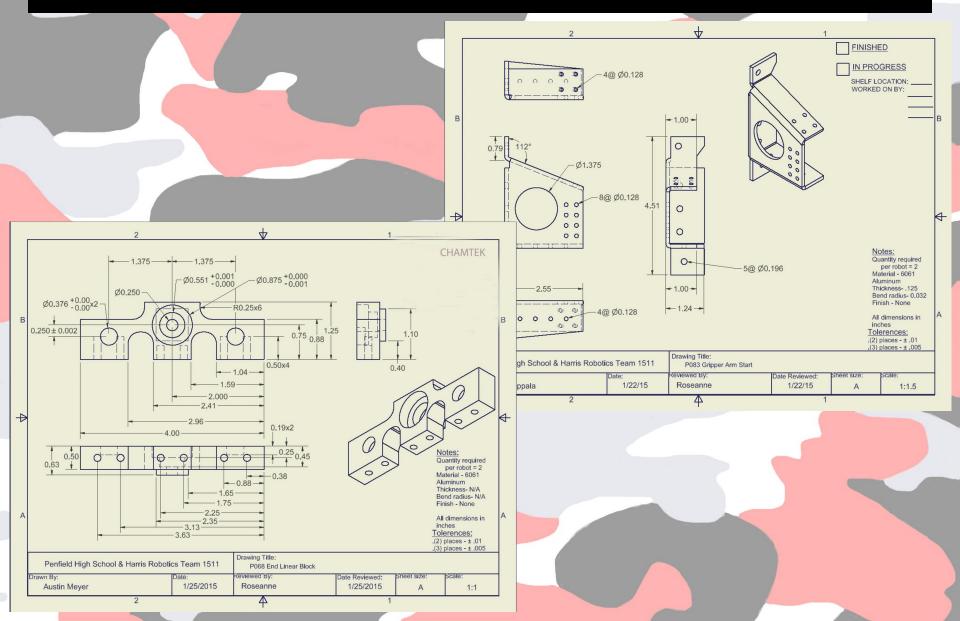
- 1. Open Inventor
- Open file Sheet Metal Starting Point int and immediately SAVE AS your part using the same number and name in you used in the parts log. Save it in the appropriate 2017 Build Season (ROBOT) folder!!

1511 Rolling Thunder Mechanical Subteam

Making a Sheet Metal Part Shop Drawing:

- A. Let's make a Shop Drawing for Harris. Note this info is also on the WIKI!
 - 1. We start by opening the template file.
 - a) From Inventor, click Open and go to 2017/01 Build Season/10 Shop Drawings.
 - b) Select Shop Drawing Template.idw and click Open.
 - c) IMMEDIATELY Save As and save the file in 2017/01 Build Season/10 Shop Drawings.
 - 1) Name your file the part number and name from the 2017 Parts & Assembly File Log.
 - 2) IF YOU FORGET TO DO THIS STEP, YOUR FILE WILL BE OVERWRITTEN OR DELETED BY THE NEXT PERSON TO USE THE TEMPLATE FILE!!
 - The writing in the upper right corner of the sheet is for tracking the part in the shop during fabrication, so we can ignore it at this time.
 - 3. Fill in the Title Block:
 - a) Expand "ied" in the browser under the Sheet 1 tree.
 - b) Double click on Field Text or Right click on Field Text and select Edit Field Text. You will get a pop-up with all of the boxes in the title block. Enter the appropriate information to the extent you can.

Model -


← Drawing Resources ← Sheet:1 ← Default Border ← Default Border ← Default Text

Sketch1

Sketch2

- 1) Title is the part number and name from the 2017 Parts & Assembly File Log.
- Sheet Size is already set as A there will be rare occasions when you need to change this but this is typical.
- 3) Scale should be 1:1 unless the part if too large to fit. If so, fill in the scale of your views. If there are multiple views on the sheet that have different scales, "Varies" or "As Noted" should be used.
- 4) **Date** should be the current date it is being worked on.

All	~	e	C
	Property Field	Value	
R	TITLE - check in GOOGLEDOC	5	
	Sheet Size	A	
	Scale		
	Date		
	Your Name Here		
	Mentors Name		
	Date		

WIKI:

navigation

Main page

- Robot Design Preseason
- Recent changes
- Help

useful links

- 1511 Main Site
- 1511 Forums
- FIRST Main Site
- Rulebook
- Chief Delphi

ouild mechanism pages

- Drivetrain
- Controls

ouild subteam pages

- Electrical
- Programming
- Mechanical

subteam portals

- Webpage
- Leadership
- Mechanical
- Electrical
- Programming
- Strategy Marketing

search

- What links here
- Related changes
- Special pages
- Printable version
- Permanent link
- Page information

Robot CAD Files

Team Resources and Documents

- All about Pre-Season!
- How do I...?
 - Demonstration Information
 - Fundraising Information
 - Community Service Information
- Media:
 - Team Document Repository
 - Parts/Tools Signout List
 - Video Editing Manual
 - How to update the Slideshow on the Website Front Page
 - How to update or Add New Files/Docs/Images to the Website
 - Rumble
 - Team Photos
 - Mentor Photos 3
 - Student Photos G
 - Team Laptop Info

Build Season

- Meeting Schedule B
- Robot Project Schedule 3
- Subteam Information 3
- 2018 Shopping List 🖾
- Parts Fabrication Instructions
- Parts and Assembly B
- Integration Task List G
- Robot Design and Mechanism Pages
- Robot Design Details
- Robot IO Map
- Drivetrain
- Cube Mechanism
- End Game Mechanism
- Controls
- Build Season Subteam Pages

NOTE: These pages are for build-season and robot-specific information. Other subteam information and resources go on the general sub-team pages below!

- Electrical Main
- Programming
- Mechanical
- Strategy
- Mentor Resources
- FIRST Links:
- 2018 Competition Manual and Updates 3
- Q&A 🗗

Wiki Editing Help

- Linking to other pages in Wikitext 🖾
- Wikitext formatting help 4
- Lists in Wikitext G
- How to Upload an Image and paste it on your page!
- Engineering Notebook Guideline and Template

PreSeason Sub-Team Pages

General and off-season Sub-team info. Build season and robot-specific details are on the build season pages (see above)

- Leadership
- Electrical
- Programming
- Mechanical
- Strategy
- Marketing

Actuators

This is preliminary and subject to change!

Motors

12 ····	22				
Mechanism	Action	Minimum Breaker Size	Motor Model #	Quantity	Notes
Intake	Grabs the cube and puts it in the hand	30A	775 Pro	2 - one left, one right	15"1 gear ratio - 5:1 and 3:1 in versa planetary gearbox
Arm	Pivots arm to robot/front back	30A	775 pro	1	50:1 gear ratio: 5:1, 5:1 in versa planetary, 18T timing pulley on motor, 36T timing pulley on axle. If beit fails, will chane to 15T sprocket on motor, 32T sprocket on axle.
Hand	holds the cube as it moves around the robot and deploys the cube	30A	775 pro	1	Starting ration will be16:1 - (2) 4:1 in the versa panetary gearbox.
Lift/Ramp	Lifts the ramp/platform with another team's robots on top	30A	775 pro	4, 2 per lift	2 Lift systems (jacks) per ramp, 1 motor on each
Drive Base	Moves the robot	40A	СІМ	6 (dropped to 4)	Gear ratio 14:64

Pneumatics

Mechanism	Action - Say what extend and retract do!	Cylinder	Extend Powered?	Extend Exhaust to Atmosphere?	Retract Powered?	Retract Exhaust to Atmosphere?	Working Pressure	Estimated Firings per Match (Sum of all powered directionst)	Notes
ntake	Extend = raise intake into robot Retract = lower intake to retrieve cubes	Bimba M-044-DP. Magnetic 3/4" bore 4" stroke, pivot mount	Yes	Yes	Yes	Yes	60 PSI	40	Assumes a defensive game (retract to prevent damage) RB1 on order RB2 on shelf
Arm Brake	Extend (spring loaded extension) = disengage brake Retract = Engage brake	Bimba 041-D. 3/4" bore 1" stroke	No	Yes	Yes	Yes	60 PSI	40 (Review comment: Would expect this to be greater than # of intake firings even under severe defense due to uncertainty of how to use cube and putting in "up" position for any substantial movement)	2 cubes auto, 8 cubes vault, 8-10 cubes switch @ 2 x per cube Rb1 & RB2 on shelf
fand on Arm	Retract = "close" hand, tighten on cube Extend = "open" hand, loosen grip on cube	Bimba 042-D. 3/4" bore 2" stroke	No	Yes	Yes	Yes	?? PSI - 60 may be too high	20 (Review comment: Thought the plan was this does not fire at all and acts as an "air spring"?)	2 cubes auto, 8 cubes vault, 8-10 cubes switch RB1 & RB2 on shelf
Lifts/Ramps (One cylinder per platform/ramp but they are plumbed together on same solenoid)	Hold/Release ramp system. Extend = hold ramps up Retract = release ramps to ground level	Bimba 061.5-DXDE 7/8" bore, 1.5" stroke Double acting, double ended	Yes	Yes	Yes	Yes	60 PSI	.1	Starts match under pressure Modifying mounting to use 3/4" bore, 2" stroke double acting on hand. Will out off 1/4" pf threaded end and grind down remaining threads. RB1 & RB2 on shelf. Consider we may not need to start match under pressure - all loads lateral.

Sensor Chart

Mechanism	Sensor Type	Function	Attachment Point	Notes
Intake	Magnetic reed switches (2) on pivot cylinder	Senses when cylinder has completed up and down motion	On cylinder	
Arm	Potentiometer	Absolute rotation position of arm.	On actual pivot/shaft.	
Arm	Limit Switch	Tripped at end of travel/at hard stop on front of robot	Left side A-frame top front	
Arm	Limit Switch	Tripped at end of travel/at hard stop on back of robot	Left side A-frame top back	
Hand on Arm	Retro-reflective beam sensor	Sense cube all the way into hand	Mounting is important! Must look "sideways" at the cube where it hits the backstop.	
Ramp	Integrated Versa Planetary Encoder	Sense travel and speed of lead screw on lift jacks One phase	4 total, 1 on each jack - Sensor should be at output stage of each gearbox	
Ramp	To be Determined	Sense when ramp jacks are fully reset (not used during match)	4 total, 1 on each jack - ADD MOUNTING DETAILS ONCE SENSOR IS KNOWN	
Drive	Shaft encoders	Travel of robot drive base. One phase	On center (traction) wheel shaft.	
Whole robot	Gyro	Sense rotation	Must be center of rotation of robot away from excessive vibration sources	
Whole robot	Camera	Visual feedback for lining up with exchange? MS LifeCam HD USB camera	On the back left corner of the robot in the area set aside in cad	

</div>

To Wrap Up:

- Stay organized.
- Stay on schedule.
- Stay firm in your decisions no matter how much extra time you take to make the design perfect, it WILL NOT work as intended the first time out. And you will have lost coding time (they can't test their code until they have a robot) and driver practice time!!!!
- Stay flexible be willing to shift people resources around when needed or modify the schedule – because STUFF HAPPENS!
- Focus on the positive don't focus on what was not done right, focus on moving forward and appreciating what has been achieved.
- Remember, although we are structuring this like an actual company project build, there is one really big difference: Everyone is a volunteer.
 If you cannot get buy-in to the process they will just ignore it or not show
 - up. Always be building consensus!

THANK YOU